WANL-PR-(Q)-014
NASA-CR-72306

DEVELOPMENT OF DISPERSION STRENGTHENED
TANTALUM BASE ALLOY

Thirteenth Quarterly Report

\ 5 by
‘ g
- R. W. Buckman and R. C. Goodspeed
- 3
| O _ . prepared for “\0 .
i t.:)o %,Sg ~ National Aeronautics and Space Administration \
- Q‘Q; Lewis Research Center
) 2 ols L
] I :Q?\Qﬁ 0N Space Power Systems Division @ o 5 ©
@3 8 o : Under Contract (NAS 3-2542) 2] T =2
cob’ o \ w > ©
< N wo o a 2
= g o g 3 &
< | E Q. > g
09 WHO4 ALITIDVA : o ‘E T S
| S o
O o

ASTRONUCLEAR LABORATORY
WESTINGHOUSE ELECTRIC CORPORATION

ff 653 July 65



NOTICE

This report was prepared as an account of Government-sponsored work.
Neither the United States nor the National Aeronautics and Space
Administration (NASA), nor any person acting on behalf of NASA:

A)

Makes any warranty or representation, expressed or implied,
with respect to the accuracy, completeness, or usefulness of
the information contained in this report, or that the use of
any information, apparatus, method, or process disclosed in
this report may not infringe privately-owned rights; or

Assumes any liabilities with respect to the use of, or for
damages resulting from the use of any information, apparatus,
method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any
employee or contractor of NASA, or employee of such contractor, to
the extent that such employee or contractor of NASA or employee of
such contractor prepares, disseminates, or provides access to, any
information pursuant to his employment or contract with NASA, or
his employment with such contractor.

Copies of this report can be obtained from:

National Aeronautics & Space Administration
Office of Scientific and Technical Information
Washington 25, D. C.

Attention: AFSS-A
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ABSTRACT

Development of dispersion strengthened tantalum base alloys for use in advanced
space power systems continued as the evaluation of Ta-8W-1Re-1Hf (ASTAR-811) and Ta-7W-
TRe-THf-0.012C-0. 012N (ASTAR-811CN) sheet material was essentially completed. Tensile
properties of TIG welded sheet specimens of both alloys were determined over the temperature
range of =320 to 2600°F. One hour post weld anneals at temperatures ranging from 1800 to
2600°F resulted in an increase in the ductile-brittle transition temperature of TIG welded
ASTAR-811CN, while the transition temperature of TIG welded ASTAR-811 remained below
-320°F. Phase identification studies on ASTAR-811CN indicated that the HCP tantalum di-
metal carbide is the precipitate which occurs during processing to 0. 04 inch sheet and short
time anneals. The FCC carbonitride phase occurs at the expense of the dimetal carbide
during fonger (>16 hours) anneals at temperatures of about 2400°F and higher. The scope of
work this period was expanded to include an investigation of the effect of grain size and
annealing temperatures on the creep properties of ASTAR-811, ASTAR-811CN, and ASTAR-
811C (Ta-8W-1Re-0. 7Hf-0.025C). Grain size data were obtained on these alloys as a

function of annealing time and temperature.
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I, INTRODUCTION -

This, the thirteenth quarterly progress report on the NASA-sponsored program,
“Development of Dispersion Strengthened Tantalum Base Alloys" describes the work accomplished
during the period November 20, 1966 to February 20, 1967. The work was performed under
Contract NAS 3-2542,

The primary objective of the current phase of this program is the processing and
evaluation of 0. 04 inch sheet of three compositions which were melted as 60-pound, 4-inch
diameter ingots. The compositions were selected for potential sheet and tubing applications

on the basis of weldability, creep resistance, and fabricating characteristics.

Prior to this quarterly period, several promising tantalum alloy compositions were

developed which exhibited a good combination of creep resistance, weldability, and fabri-

cability. (1,) The three compositions selected for scale up are:
ASTAR-811 Ta-8W-1Re-1Hf
ASTAR-811C Ta-8W-1Re-1Hf-0. 025C
ASTAR-811CN Ta-7W-1Re-1Hf-0.012C-0. 012N

These compositions were consumable electrode double vacuum arc melted as 60-pound, 4-inch
diameter ingots, which were subsequently processed to 0. 04-inch sheet by a combination of
forging and rolling. Evaluation of composition Ta-8W=-1Re-1Hf-0.025C (ASTAR-811C) has

been essentially completed,(z)
1Hf (ASTAR-811) and Ta-7W-1Re-1Hf-0. 012C-0.012N (ASTAR-811CN), initiated. @)

and evaluation of the remaining two compositions Ta-8W-1Re-

During this quarterly period the evaluation of weldability, tensile properties, and
creep resistance of the Ta-8W-1Re-1Hf (ASTAR-811) and Ta-7W-1Re-1Hf-0.012C-0. 012N
(ASTAR-811CN) was essentially completed. The scope of the contract was also expanded to
include an investigation of the effect of grain size on the creep properties of all three scale-
up alloys. To date grain size data has been obtained as a function of annealing time and

temperature,
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Il.  PROGRAM STATUS

A. EFFECT OF THERMAL TREATMENT ON CREEP BEHAVIOR

The scope of work was changed to include a limited investigation on the effect of
final annealing treatment on the creep behavior of the ASTAR-811, ASTAR-811C, and ASTAR-
811CN compositions. Prior work(4) on ASTAR-811C (Ta-8W-1Re-1Hf-0. 025C) has shown that
creep behavior is strongly influenced by the final annealing temperature. Increasing the final
annealing temperature from 1650°C to 2000°C resulted in a 50% reduction in creep rate.
However, the average grain diameter increased from 0,03 mm to 0. 18 mm as the 1 hour anneal-
ing temperature was increased from 1650°C to 2000°C. In addition there was also a significant
change in the precipitate morphology as the annealing temperature was increased. 4 Thos it
is important to identify the factors contributing to the observed improvement in creep behavior.
A series of specimens will be annealed over the temperature range of 1800-2100°C for a time
sufficient to produce a final grain size of 0.03 mm, the resulting grain size achieved after the
standard final annealing treatment, i.e., 1 hour at 1650°C. The specimens will then be creep

tested at 2400°F under an applied stress of 15,000 psi.

During this period, 0. 04-inch thick sheet specimens of all three ASTAR compositions
were annealed at 1800, 1900, 2000, and 2100°C (3270, 3450, 3630, and 3810°F) for 30, 300,
and 900 seconds. The 0.04-inch sheet from which the specimens were taken had been reduced
85% by cold rolling. The average grain diameter determined by the line intercept method
and room temperature hardness data are recorded in Table 1. The annealing sequence consisted
of slowly heating the furnace to 1200°C while maintaining the chamber pressure at <1x 10_5
torr and then heating to the desired temperature as rapidly as possible. Time at temperature
was recorded from when the specimen reached a temperature within 50°C of the test temperature.
After the specified time at temperature the furnace was shut off and the chamber was back-

filled with helium gas to accelerate cooling of the specimens. All specimens were heat treated

bare. From these results the heat treatments selected to produce a grain size of 0. 03 mm are
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as follows:

10 minutes at 1800°C/3270°F
5 minutes at 1900°C/3450°F
30 seconds at 2000°C/3630°F

It has been shown that under isothermal conditions, the grain size (D) varies with

time (t) according to the following expression:

D2=Kth

where the surface energy of the boundary (y) is the driving force for boundary migration. K
is a rate constant and V is the grain atomic volume. Thus at a given temperature, the grain
size is proportional to the square root of time. The grain size data in Table 1 when plotted

. aD
as a function of time (see Figure 1) result in a good linear fit. The slope of this curve—aT2
t

is equal toVK , the parabolic rate constant which varies with temperature according to the
familiar Arrhenius rate equation;

K =K° exp_Q/RT

where Q is the activation energy, T is absolute temperature, R is the gas constant, and Ko a
proportionality constant. Thus the activation energy for grain growth can be calculated from
the slope of the curve D2/f vs 1/T. From the D2/r vs 1/T plot in Figure 2, a value of Q of
92 kcal/mole was determined. The activation energy for the self diffusion of tantalum is
reported to be 110 kco|/mo|e(5) and it would be expected that the activation energy for grain
boundary migration would be less than one-half this value. Thus the value of 92 kcal/mole
determined for these tantalum alloys appears to be higher than would normally be expected.

The explanation for this apparent high value is not evident.

The grain growth behavior of all three tantalum compositions was identical over the
range of test temperatures studied. This would be expected for the ASTAR-811 and ASTAR-
811CN since at 1800°C, the solvus for the 0.012C and 0. 012N has been exceeded. However,

the carbon solvus for the ASTAR-811C which contains 0.025% is not exceeded until heating
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BW-1Re=0. 7Hf-0. 025C) (Ta=7W-=1Re-1Hf-0. 012C-0. 012N)
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- 0.18 |- __
|
‘(
| - 0.16 |- —_
. 0.14 |- —
_ 2000°C _
2000°C
- —
1900°C
1800°C | 1800°C .
d 1 1 \ I !
3 4 5 ¢ 5 6
[TIME 4/MINUTES 612157-78

FIGURE 1 - Grain Size of ASTAR-811, ASTAR-811C, and ASTAR-811CN as a

Function of Annealing Time and Temperature
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above 1900°C. Thus it can be concluded that the carbide particles present at 1800°C do not

inhibit grain boundary migration.

B. INTERSTITIAL ELEMENT LOSSES DURING VACUUM HEAT TREATMENT

The carbide and nitride phases in the tantalum alloy matrix have appeared stable for
long time periods over the temperature range of 1800-2600°F when exposed at pressures of
<1x 10_8 torr. (6) However, as discussed previously, the optimum creep characteristics are
achieved by using final annealing treatments in the 3200-3600°F temperature range. Current
industry wide practice for high temperature vacuum heat treatment is to use unbaked, polymer
sealed systems operating at 10-5 - 10_4 torr. Most heat treatment specifications also require
Ta, Cb, or Cb-1Zr foil wrapping of the work piece as a barrier to contamination during the
annealing cycle. Decarburization of a carbon containing tantalum alloy at 1 x 10™ torr at
>2000°C was reported early in this investigation. ?) It is assumed that the decarburization
is via the methane and/or CO reactions similar to that reported for decarburization of moly-
bdenum alloys. It was also shown that wrapping the sample with pure tantalum foil resulted
in a greater carbon loss. It is assumed that the foil acts as a sink and that the rate of carbon
transfer across the foil interface is faster than the carbon loss due to reaction with the residual
H2, HZO present in the vacuum chamber atmosphere at 1 x 10_5 torr.

Additional vacuum annealing tests were made during the report period on the carbonitride
strengthened composition ASTAR-811CN (Ta-7W-1Re-1Hf-0.012C-0. 012N). Sheet specimens,
0. 04-inch thick, bare and wrapped with tantalum foil, were exposed for 5, 30, and 60 minutes
at 2100°C (3810°F). After heat treatment, the samples were then analyzed for carbon and
nitrogen content. The analytical results are recorded in Table 2 and graphically illustrated
in Figures 3 and 4. Significant carbon and nitrogen losses have occurred during this annealing
treatment and confirm the losses observed previously when annealing this composition at 2000°C

(3)

tion,acts as a sink for carbon. The nitrogen loss is assumed to be by degassing and the foil

and above. The use of a foil wrapping, while reducing the possibility of oxygen contamina-

wrapping appears to retard the rate at which it occurs.
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TABLE 2 - Chemical Analyses of Unwrapped and Wropped(c)ASTAR—SHCN
(Ta—%W-]Re-AHF-O. 012C-0.012N) as a Function of Time at
2100°C/3810°F and 1 x 1072 Torr in Oil Diffusion Pumped Vacuum System

Total
(b) Carbon Nitrogen Interstitials
Condition Time | Content| % Carbon| Content | % Nitrogen Lost
(min.)} (ppm) | Lost (ppm) Lost ppm| (%)
Unwrapped 5 96 20 64 47 80 [33.5
30 64 47 49 59 127 |53
60 55 54 31 74 154 | 64
Wrcpped(o) 5 | 72 40 113 6 55 | 23
30 82 32 70 42 88 |37
60 47 61 64 47 129 | 54

(a) Specimens wrapped tightly in pure tantalum foil.
(b) Initial carbon and nitrogen content 120 ppm.
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FIGURE 3 - Carbon and Nitrogen Losses in Unwrapped and Wrapped ASTAR-811CN
(Ta-7W-1Re-1HFf-0.012C-0.012N) as a Function of Time at 2100°C/3810°F

and 1 x 1075 Torr in Oijl Diffusion Pumped System
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FIGURE 4 - Total Interstitial Losses in Unwrapped and Wrapped ASTAR-811CN

(Ta-7W-1Re-1Hf-0. 012C-0. 012N) as a Function of Time at 2100°C/3810°F
and 1 x 1073 Torr in Oil Diffusion Pumped System
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These tests are very preliminary in nature and more detailed work is beyond the scope
of this program. But certain obvious implications arise if refractory metal alloys strengthened
with carbide and/or nitride dispersions are to be utilized to the fullest. High temperature
vacuum annealing treatments on alloys of the type which have been developed during this
investigation may have to be accomplished in bakeable ultra~high vacuum systems to prevent
carbon loss and with a controlled nitrogen partial pressure to prevent nitrogen loss. There is no
doubt that a general improvement in the current state-of-the-art of vacuum annealing as
practiced by the industry will have to be advanced in order to ensure that interstitial composi-
tion does not change during the required annealing treatment. This advancement will necessarily
include the development of large bakeable ultra high vacuum furnaces capable of operation at

up to approximately 4000°F.

C. WELDABILITY

The effect of post weld annealing on the ductile-brittle transition temperature was
determined on 0. 04-inch sheet of ASTAR-811and ASTAR-811CN which had been annealed for
1 hour at 1650°C and then TIG welded. Bead-on-plate type welds with 100% penetration were
tested in bending over a 1tbendradius with the weld bead transverse to the bend axis. After
welding specimens were annealed for 1 hour at 980,1200, and 1425°C (1800,2200, and 2600°F).
The data obtained are recorded in Table 3. The ductile-brittle transition temperature of the
solid solution alloy ASTAR-811 was less than -320°F as-TIG welded and did not change as a
result of post-weld annealing. However, the transition temperature of the as-TIG welded
ASTAR-81T1CN increased significantly after post-weld annealing with the higher post weld
annealing temperature resulting in the greatest change. The increase in the ductile-brittle

transition temperature for ASTAR-811CN summarized below is illustrated in Figure 5.

1 Hour
DBTT Post Weld Annealing
(OF) Temperature (OF)
-225 As-Welded
-200 1800
-100 2200

<0 2600

11
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FIGURE 5 - Ductile-Brittle Transition Temperature Test Results for Post (TIG)
Weld Annealed ASTAR-811CN (Ta-7W-1Re-1Hf-0. 012C-0.012N)
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Failure occurred primarily within the weld and heat affected zones and appeared to be inter~

granular in nature,

Hardness traverses were made on transverse sections of as-electron beam and as-TIG
welded sheet and post-weld annealed specimens of both alloys. The hardness traverses for as-
electron beam and as-TIG welded ASTAR-811 and ASTAR-811CN sheet are shown in Figure
6. Little hardness variation was observed in either alloy across the base metal, weld, and heat
affected zone. This same behavior was exhibited by the specimens which were post-weld
annealed, although there was a decrease in hardness level of from 275 to 255 DPH for the

ASTAR-811CN while that of the ASTAR-811 remained essentially unchanged.

The microstructures of the as-TIG welded ASTAR-811 and ASTAR-811CN were
essentially single phase in the base metal, fusion, and heat affected zones. The few isolated
precipitates observed are assumed to be primarily Hf02 in the ASTAR-811 and T02C in the
ASTAR-811CN. The photomicrographs in Figure 7 are typical of microstructures which were

observed for ASTAR-811 and ASTAR-811CN in the as-welded condition.

The microstructure of the as-TIG welded ASTAR-811 remained essentially unchanged
after the post weld annealing treatment. An exception however was that a sub-boundary
network formed in the heat affected zone and some precipitation occurred near the weld/heat
affected zone interface after post weld annealing for 1hourat 2200°F (see Figure 8). Thus the
post weld annealing treatments did not alter the ductile-brittle transition temperature of
ASTAR-811 which is consistent with the observed absence of hardness and microstructural

changes.

Post weld annealing ASTAR-811CN however did produce significant changes in the
as-TIG welded single phase microstructure. The resulting microstructures produced by the 1
hour post weld anneals at 1800, 2200, and 2600°F are shown in Figure 9. Extensive precipita-

tion occurred throughout the base metal, fusion, and heat affected zones during each of the post

14
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(@) Weld Zone

(b) Heat Affected Zone

(c) Base Metal

FIGURE 7 - Representative Microstructures of TIG Welded
ASTAR-811 (Ta-8W-1Re-T1Hf) 500X
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1500X

FIGURE 8 - Microstructure of Weld Zone/Heat Affected Zone Interface in TIG
Welded ASTAR-811 (gc—SW—1§e—1HF) Specimen After 1 Hr. Post
Weld Anneal at 1200 C (2200 F)
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weld annealing treatments. The formation of this precipitate, which is most likely TGZC, no

doubt accounts for the observed hardness decrease.

The distribution of the precipitate however did appear to be affected by the anneal-
ing temperature. At 1800°F, the precipitation occurred primarily throughout the matrix while
at 2200°F and 2600°F, precipitates were formed at primary grain boundaries and cell and sub-
boundaries in the fusion and heat affected zones. The cell and sub-boundary precipitates
were larger after annealing at 2600°F. This change in precipitate distribution can thus be
used to qualitatively explain the increase in ductile-brittle transition temperature with
increasing post weld annealing temperature , particularly as the annealing temperature was

increased from 1800 to 2200°F.

D. MECHANICAL PROPERTIES

1. Tensile Properties of TIG Welds — Bead-on-plate tungsten inert gas (TIG) welded
specimens of ASTAR-811 and ASTAR-811CN were tested over the temperature range of -320
to 2600°F (-195 to 1425°C) to evaluate the effects of welding on tensile properties. The

welds, both longitudinal and transverse, were made on 0. 04-inch thick sheet which had been
annealed for 1 hour at 1650°C (3000°F) prior to welding. Tensile data are recorded in Table
4A along with the previously obtained data for ASTAR-811C. The tensile data for both ASTAR-
811 and ASTAR-811CN appear to be anomalous in that the ductility values at room tempera-

ture were lower than those obtained at —1950C (-320°F).

An additional set of room temperature tungsten inert gas (TIG) welded tensile speci-
mens of each alloy were made and retested because of these anomalous results. Sections of
0.33-inch plate, processed from the side forgings, were annealed for 1 hour at 1700°C (3090°F)
and rolled to 0.05-inch sheet, from which specimen blanks were obtained. These blanks were
then annealed for 1 hour at 1650°C (3000°F) and the required transverse and longitudinal
bead-on-plate TIG welds were made. Specimens, 0. 04-inch thick, were machined from the

welded blanks, x-rayed to ensure that no weld defects were present, and tested at room
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TABLE 4A - Tensile Properties of TIG Welded ASTAR-811, ASTAR-811C,
and ASTAR-811CN

Ultimate

Composition and Test Weld 0.2% Yield | Tensile % E| .
Heat No. Tgmp. Direction Strength Strength }— ongation
("F) (ksi) (ksi) Uniform| Total
ASTAR-811 -320 Longitudinal 133.7 157.0 16.3 118.6
(Ta-8W-1Re-1HFf) -320 Transverse 137.3 160. 6 16.0 |19.7
Heat NASV-22 RT Longitudinal 77.3 ——- 8.15} 8.3
RT Transverse 80.5 -—-- 8.3 8.6
1800 Longitudinal 36. 2 57.6 -—- 18.1
2000 Transverse 30.7 47. 2 -—- 10.7
2400 Longitudinal 27.8 32.2 --- 6.6
2600 Transverse 24,3 28.5 -—- 4.9
ASTAR-811C -320 Longitudinal 157.3 184. 6 16.7 |24.2
(Ta-8W-1Re-0. 7Hf-| -320 Transverse 159.0 176. 2 10.9 [ 14.2
0.025QC) RT Longitudinal 109. 8 115.3 15.0 [ 28.5
Heat NASV-20 RT Transverse 89.3 107. 2 10.6 |18.7
1800 Longitudinal 44.0 67.1 --- 18.7
2400 Longitudinal 35.3 4.1 --- 129.0
2600 Longitudinal 32.5 36.0 --- 126.7
ASTAR-811CN -320 Longitudinal 166. 4 -—- 5.25| 5.4
(Ta-7W-1Re-1Hf- -320 Longitudinal 163.0 194, 5 17.4 |22.5
0.012C-0.012N) RT Transverse 106. 3 113.5 9.7 |11..3
Heat NASV-23 RT Transverse 110.8 116.3 9.6 |15.4
1800 Longitudinal 45.3 70.6 --- 120.6
2000 Transverse 40.0 65.0 --- 16.4
2400 Longitudinal 37.2 45,4 — 19.7
2600 Transverse 31.0 35.9 --- 21.5
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temperature and at -320°F. The results are recorded in Table 4B. Where significant differ-
ences were noted, they are assumed to represent defective weldments in the original specimens.
The test results for the ASTAR-811CN weldments indicate that the fracture mode is changing

from ductile to brittle at -320°F.

2. Creep Properties — Creep properties for 0. 04-inch thick ASTAR-811 and ASTAR-
811CN sheet were obtained at 2200-2600°F at stress levels of 8,000-19,000 psi. The data
are recorded in Table 5. These data normalized using the Larson-Miller parameter are plotted

in Figure 10 along with data for T-111 and ASTAR-811C. The creep strength of the solid

solution composition ASTAR-811 is slightly better than T-111 but significantly inferior to both
ASTAR-811C and ASTAR-811CN. The effects of the individual additions on creep strength
at 2400°F and 15,000 psi are summarized below.

o
Composition Time to 1% Strain ot 2400°F

w/o and 15,000 psi
Ta-8W-2Hf (T-111) 20
Ta-8W-1Re-1Hf (ASTAR-811) 54
Ta-8W-1Re-1Hf-0. 025C (ASTAR-811C) 260
Ta-7W-1Re-1Hf-0. 012C-0. 012N 157

(ASTAR-811CN)

Although there is an apparent increase in creep resistance when rhenium is added
to the tantalum matrix the increase may be due to the reduction of hafnium content, which

)

1 .
has already been shown to exert a pronounced affect on creep strength. ( There is however
no doubt concerning the effect of the carbon and/or nitrogen additions on creep strength.
Additional tests are underway to establish the stress and temperature dependence for each

composition,

E. PHASE IDENTIFICATION

Information as to the identity of the precipitating phase(s) in the tantalum alloy

matrix and their stability as a function of temperature and time is of vital importance.
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Understanding of these phase relationships will aid in identifying the mechanism(s) contribu-
ting to the low and elevated temperature strength thus allowing more precise control over

the final mechanical properties.

Prior work on the Ta-8W-1Re-1Hf-0.025C (ASTAR-811C) composition has shown
that the dimetal carbide (TapC) is the only precipitating phase. It was also shown that the

@

morphology of the T02C precipitate could be significantly altered by thermal treatment.

During this period, phase identification work has been carried out on the Ta-7W-
1Re-1Hf-0.012C-0. 012N composition (ASTAR-811CN). This alloy is essentially identical
to ASTAR-811C except one half of the carbon has been replaced with an equivalent amount

of nitrogen.

The dispersed phases present in the ASTAR-811CN at the various stages of process-
ing from the as-cast ingot to 0. 04 inch sheet were chemically extracted and analyzed by
x-ray diffraction. The results which are recorded in Table 6 indicate only the presence of
the HCP dimetal carbide T02C (ao =3.10 - 3. HAO, <, =4, 94A°, c/a =1.59). There is

however very minor amounts of monoclinic Hf02 present which no doubt results from the

residual oxygen. The amount of Ta,C which occurred after annealing sheet at 3000°F and

2
above is generally quite small since the carbon solvus for ASTAR-811CN is exceeded at or
slightly above this temperature. No evidence of a nitride phase was detected and is con-

sistent with previous work on tantalum alloy compositions containing 100-150 ppm nitrogen.

Subsequent aging at lower temperatures was carried out over the temperature range

of 2000-2600°F for times of 1 and 16 hours on ASTAR-811CN 0. 04 inch sheet which had

9)

been solution annealed at 3000°F for 1 hour. Longer time aging treatments (up to 1000 hours)

over this same temperature range are in progress and will be completed during the next report

period. X-ray diffraction results on the residues chemically extracted from these specimens

are listed in Table 7. Only TazC was observed after aging for 1 and 16 hours up to 2400°F
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TABLE 6 - X-ray Diffraction Analyses of Various ASTAR-811CN
(Ta-7W-1Re-1Hf-0.012C-0.012N) Bulk Extracted Residues

Specimen Phases Comments
As~-cast HCP T02C 1
As-upseci; forged HCP Ta,C 1
at 1400°C (2550°F) Mono HFO,(VW)

Forged + annealed HCP Ta,C 1
(1 hr. /1650°C (3000°F) Mono HFO,(VW)

As-rolled 0. 06" sheet HCP T02C 1
0. 06" sheet annealed HCP TGZC 1
(1 hr. /1700°C (3090°F)

As-rolled 0. 04" sheet HCP TapC 1

Mono HFOZ(VVW)

0. 04" sheet annealed HCP T02C 1
(1 hr. /1650°C (3000°F)

NOTE: Approximate lattice parameters of all the HCP T02C
phases were:

) o
a =3.10t0 3. 11A Co=4.94A ¢c/a=1.59
VW - VeryWeak, VVW - Very Very Weak

(1) Diffraction lines partially resolved
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TABLE 7 - X-ray Diffraction Analyses of Phases Extracted from ASTAR-811CN
(Ta—7W-1Re 1Hf-0.012C-0.012N) Specimens Annealed for 1 Hour

at 1650 C and Aged for 1 and 16 Hours at 1090, 1200, 1315, and
1425°C,

Specimen Phases Comments

0. 04" sheet annealed

(1 hr. /1650°C (3000°F) HCP Ta,C 1

+(1 hr. /1090°C (2000°F) HCP Ta,C 1
+(1 hr. /1200°C (2200°F) HCP Ta,C

+(1 hr. /1315°C (2400°F) HCP Ta,C

Mono HfOz(VVW)
+(1 hr. /1425°C (2600°F) HCP Ta,C 1
Mono HFOZ(VW)
+(16 hrs. /1090°C (2000°F) | HCP Ta,C

+(16 hrs. /1200°C (2200°F) | HCP To,C

Mono HFO (VVW)

+(16 hrs. /1315°C (2400°F) | HCP Ta..C 1
Mono H%O (VVW)

+(16 hrs. /1425°C (2600°F) | HCP Ta,C (S) 1
Mono HF02(VW) o
FCC HF(CN) (M) a =4,56A

NOTE: Approximate lattice parameters of all the HCP Ta C

phases were:

) )
u°=3.10 to 3.11A Co=4.94A ¢/a=1.59%

(1) Diffraction lines partially resolved
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and after 1 hour at 2600°F. However, after 16 hours at 2600°F, a FCC phase, most likely
2C and Hf(CN) precipi-

tate is a drop in the room temperature hardness (See Figure 11). The largest change in hardness

HF(CN), is beginning to form. Accompanying the formation of the Ta

occurred after the first hour which is indicative of the rapid precipitation kinetics of the
carbide precipitation reaction. The room temperature hardness after aging for 16 hours at
2000, 2200, and 2400°F is similar. However there is a definite increase in the hardness
level for specimens aged at 2600°F which may reflect the higher interstitial solubility or may
be related to the nitride precipitation reaction. The appearance of the FCC phase was not
unexpected since a similar composition tested early in this investigation exhibited the same

(9)

behavior.

I, FUTURE WORK

During the next period the following will be accomplished.

1. Initiate creep testing of controlled grain size creep specimens.

2. Continue investigation on the effect of long time annealing treatments on

the phase morphology and stability of the ASTAR-811C and ASTAR-811CN.

3. Complete 500 hour annealing treatment at 2200°F on TIG welded ASTAR-811CN

(Heat NASV-23) and determine ductile brittle transition temperature.
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FIGURE 11 - Aging Behavior of ASTAR-811CN
(Annealed 1 Hr. at 3000°F Prior to Aging)
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